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Abstract  

 Liver fibrosis is a significant global health issue characterized by the progressive 

accumulation of extracellular matrix (ECM), leading to hepatocyte dysfunction 

and disruption of liver architecture. This condition arises from hepatocyte injury 

and inflammatory cell infiltration, triggering the trans differentiation of hepatic 

stellate cells (HSCs) into myofibroblasts that produce collagen, contributing to 

fibrosis. A key factor in this pathology is the excessive production of reactive 

oxygen species (ROS) due to various insults such as toxic exposure or viral 

infection, which further exacerbate hepatocyte damage and fibrogenesis. The 

activation of nuclear factor-kappa B (NF-κB) amplifies the inflammatory 

response. Therapeutic interventions targeting oxidative stress and inflammation, 

such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome 
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proliferator-activated receptor gamma (PPARγ) pathways, have shown promise 

in mitigating fibrosis by enhancing antioxidant defenses and regulating 

inflammatory processes. Additionally, photobiomodulation therapy (PBMT), 

particularly low-level laser therapy (LLLT), has emerged as a potential non-

invasive approach to reduce oxidative stress and inflammation. However, the 

specific mechanisms by which LLLT affects liver fibrogenesis require further 

investigation. This review aims to explore the potential of Low-Level Laser 

Therapy (LLLT) in mitigating liver fibrosis by examining its impact on the 

activation of antioxidants and anti-inflammatory cytokines. It focuses on 

elucidating how LLLT may stimulate molecular pathways, including Nrf2 and 

PPARγ, which are crucial regulators in the fibrogenesis process.  
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1. Introduction  

Liver fibrosis is a worldwide health issue that causes considerable morbidity and 

mortality (Friedman, 2003) it is caused by long-term liver damage. It is identified 

as a chronic wound-healing response to various stresses. It has been identified as 

a complex chronic process involving excessive deposition of extracellular matrix 

(ECM) proteins (glycoproteins, collagens, and proteoglycans) and hepatic 

stellate cell (HSC) activation (Friedman, 2000; Pan et al., 2020). Liver fibrosis 

is the common histopathologic feature that has the greatest impact on mortality. 

Liver cirrhosis develops gradually and is followed by secondary issues such as 
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hepatocellular carcinoma (HCC) and liver failure, leaving only liver 

transplantation as the treatment option (Berumen et al., 2021). 

In population-based cohorts in Europe, the detection rates of hepatic fibrosis 

ranged from 0.7% to 7.5%. Nonalcoholic fatty liver disease (NAFLD)has been 

considered the most common cause of liver fibrosis in all studies (Harris et al., 

2017). Based on the evaluation technique and demographics, estimates of 

advanced fibrosis. prevalence in North America has ranged from 3.2% to 10.3%. 

In Asia, few studies have been conducted to establish the incidence of liver 

fibrosis in both the general population and risk populations, while Hong Kong 

studies found elevated levels of advanced fibrosis in 2% and 17.7% of these two 

groups, respectively. Which 2 groups in Africa or Latin America, liver fibrosis 

is responsible for mortality due to hepatitis B(HBV) and (HCV) infections 

(Gines et al., 2022). 

Hepatotoxic and cholestatic injuries are the primary etiologies of liver fibrosis. 

Hepatotoxic damage is caused by cellular injury caused by external causes such 

as viral infections (HBV and HCV), and alcoholic and non-alcoholic 

steatohepatitis (Roehlen et al., 2020). While cholestatic damage is defined as 

decreasing or blocking the bile flow, this occurs due to several illnesses including 

primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and 

biliary atresia(Sharma & Nagalli, 2021). A liver biopsy is the gold standard for 

the diagnosis and staging of liver fibrosis. There are numerous classification 

systems for liver fibrosis, including The Knodell score, The preferred Batts-

Ludwig and Scheuer classification of fibrosis, and the Ishak scale. The Knodell 

score, developed in 1981, distinguishes three phases of fibrosis; 1) Zero fibrosis 

(no fibrosis as well as fibrous portal enlargement), 2) Bridging fibrosis 

(periportal fibrosis) (portal–portal or portal–central linkage), and  3) Cirrhosis 

(Knodell et al., 1981). The preferred Batts-Ludwig and Scheuer classification of 

fibrosis is divided into four phases; 1) Expansion of the fibrous portal, 2) Portal-

portal septa periportal fibrosis, 3) Cirrhosis with bridging fibrosis but no apparent 

cirrhosis, and  4) Fibrous septa around regenerative nodules (Locke et al., 1996). 

On the Ishak scale fibrosis stages run from 0 to 6; 0: No fibrosis, 1: Fibrous 

growth of certain portal regions, with or without short fibrous septa, 2: Most 

portal locations have fibrous expansion with or without short fibrous septa, 3: 
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Fibrous growth of most portal locations, including portal-to-portal bridging on 

occasion, 4: Fibrous portal area extension with distinct portal-portal and portal-

central bridging, 5: Distinctive bridging with occasional nodules (incomplete 

cirrhosis) and   6: Cirrhosis, either probable or certain (Ishak et al., 1995). 

1.1. Symptoms and complications 

Hepatic fibrosis does not generate symptoms on its own. But in most clinical 

situations such as( recurrent episodes of severe acute alcoholic hepatitis, 

subfulminant hepatitis, and fibrosing cholestasis in patients with HCV 

reinfection after liver transplantation) it develops into cirrhosis (Berenguer et al., 

2003). Cirrhosis develops in most individuals after 15–20 years. Cirrhosis-

related clinical consequences include ascites, renal failure, hepatic 

encephalopathy, and variceal hemorrhage. Cirrhotic patients can be free of 

serious problems for many years (compensated cirrhosis). Decompensated 

cirrhosis is linked with a low survival rate, and liver transplantation is frequently 

recommended as an alternative viable treatment(Davis et al., 2003). it is also 

associated with an increased chance of developing hepatocellular cancer. 

2. Cell types are involved in the liver fibrosis progression.  

Recent investigations have revealed that extracellular matrix accumulation 

during chronic liver fibrosis is driven by a heterogeneous population of cells 

(Elpek, 2014). 

2.1. Hepatic stellate cells (HSCs) 

Hepatic stellate cells serve as the most abundant kind of cells associated with 

liver fibrosis. HSCs are quiescent in normal livers, dwell in the Disse area, store 

vitamin A in lipid droplets, and act as liver pericytes(Dhar et al., 2020). HSCs 

shed lipid droplets, develop into myofibroblasts, and express less of the genes 

glial fibrillary acidic protein and peroxisome proliferator-activated receptor 

gamma (PPAR-γ) in response to chronic liver injury. The expression of 

fibrogenic genes such as alpha-smooth muscle actin (α-SMA) and collagen I 

starts in myofibroblasts. They spread out and relocate to the area of liver injury, 

producing ECM there(Acharya et al., 2021). Vascular endothelial growth factor 
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(VEGF), which is also produced by myofibroblasts, directly promotes HSC 

proliferation(Duffy et al., 2004). 

2.2. Inflammatory cells and cytokines 

Inflammation brought on by acute liver damage is beneficial for encouraging 

hepatic regeneration. On the other hand, chronic inflammation is damaging and 

contributes significantly to the etiology of liver fibrosis. Inflammatory cells such 

as (neutrophils, Kupffer cells, liver resident macrophages, bone marrow-derived 

monocytes, and Th17) cells can activate HSCs by secreting cytokines and growth 

factors, according to in vitro and in vivo studies(Seki & Schwabe, 2015). 

Transforming growth factor (TGF-β), which is crucial for liver fibrogenesis, is 

mostly produced by liver macrophages, particularly Kupffer cells(Dooley & ten 

Dijke, 2012). TGF-β binds to its receptor in HSCs, promoting myofibroblast 

activation and collagen Types I and III production. Therefore, it has been shown 

that blocking TGF-β or its genetic deletion, reduces liver fibrosis(Dewidar et al., 

2019). Th17 cells release IL-17, a profibrogenic cytokine, it was reported that 

inhibiting IL-17 signaling prevents the development of liver fibrosis(Tan et al., 

2013). Another fibrogenic cytokine, chemokine (C-C motif) ligand 2 (CCL2) 

which is generated by macrophages in response to liver injury increases HSC 

activation in the liver (Saiman & Friedman, 2012). 

Platelet-derived growth factor (PDGF) is a strong mitogen for HSCs that is 

secreted by macrophages. The development of liver fibrosis and HSC activation 

have both been shown to depend on the PDGF signaling pathway. When the liver 

is injured, neutrophils and activated Kupffer cells release reactive oxygen species 

(ROS), which encourages HSC activation (Ramos-Tovar & Muriel, 2020; Ying 

et al., 2017). Notably, macrophages not only induce liver fibrosis but can also 

assist in fibrosis recovery by inducing myofibroblast apoptosis and 

phagocytizing apoptotic cells (Ramos-Tovar & Muriel, 2020). Furthermore, they 

release matrix metalloproteinases such as MMP9, MMP12, and MMP13, which 

destroy ECM, a critical component in fibrosis resolution. MMP activation 

reduces the expression of tissue inhibitors of metalloproteinases (TIMP1). 

TIMP1 promotes HSC activation and survival (Cabral-Pacheco et al., 2020).  
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2.3. Liver sinusoidal endothelial cells (LSECs) 

Liver sinusoidal endothelial cells (LSECs) are required for nutrition transport, 

lymphocyte recruitment from the bloodstream, cytokine, and growth factor 

release, and have been shown to keep HSCs dormant in healthy livers (Wilkinson 

et al., 2020). LSECs produce nitric oxide synthase (eNOS) which is crucial for 

LSECs' physiological phenotypic maintenance, inhibiting HSC activation, and 

facilitating the conversion of active HSCs to quiescence(Xie et al., 2012). As a 

result, the gatekeeper function that stimulates HSCs quiescence entrance is 

missing in the LSECs of the injured liver. After the rupture of endothelial cells, 

LSECs release profibrogenic cytokines such as TGF-1, PDGF, interleukins, 

tumor necrosis factor (TNF), and VEGF. These cytokines attract inflammatory 

cells and activate HSCs at the site of damage (Yang & Zhang, 2021).  

3. Experimental models for studying liver fibrosis in rats  

There has been extensive research on how fibrosis and liver cirrhosis are 

established in both animals and people. Several in vitro and in vivo studies have 

been conducted to investigate the pathophysiology and molecular mechanisms 

involved in liver fibrosis as well as the potential protective and treatment 

measures.  

3.1. Chemical‑based models 

Since many different drugs are known to cause liver fibrosis, they are commonly 

used to induce liver fibrosis in experimental animal models such as: 

3.1.1. Ethanol-induced liver fibrosis 

Hepatic steatosis is the most typical sign of alcoholic liver disease (ALD), which 

can result in fibrosis and cirrhosis. The primary metabolizers of ethanol in the 

liver are alcohol dehydrogenases and CYP450 enzymes. This mechanism is 

linked to the production of reactive oxygen species (ROS), glutathione depletion, 

lipid peroxidation, activation of HCS, and increased collagen synthesis (Beier & 

McClain, 2010; Lieber, 1997). The two mouse strains that are used in ALD 

research the most frequently are HAP-2 and C57BL/6. Compared to rats, mice 

are more likely to get alcohol-induced liver fibrosis, with female mice being the 
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most susceptible (Melon et al., 2013; Shinohara et al., 2010). However, no rodent 

model completely mimics the effects of alcohol use on ALD in humans. To get 

around these restrictions, other techniques have been devised, including 

combining the administration of ethanol with a second stimulus such as a 

specialized diet, pharmacological agents, CYP450 inducers, hormones, Toll-like 

receptor ligands, genetic alteration, or viral infection. However, several factors 

influence these combinational models, which may make it challenging to 

comprehend the findings (Brandon-Warner et al., 2012; Enomoto et al., 1998).  

3.1.2. Carbon tetrachloride (CCl4)-induced liver fibrosis  

The most popular hepatotoxin utilized in rodent models of liver fibrosis and 

cirrhosis is carbon tetrachloride (CCl4). It resembles chronic illness and toxic 

damage in humans in many ways. CCl4 biotransformation in the liver results in 

based on CYP2E1 and trichloromethyl radical that is used in the processes of 

lipid peroxidation and free radical reactions (Basu, 2003; Weber et al., 

2003)which are responsible for an acute-phase reaction that is represented by a 

significant increase in collagen fiber content, centrilobular hepatocytes necrosis, 

Kupffer cells activation and the stimulation of inflammation (EL Sayed et al., 

2019; Heindryckx et al., 2009). Both rats and mice can be used in the CCl4 

model. Mice, on the other hand, are favored because they have a greater CCl4 

metabolic rate than rats (Wallace et al., 2015). For induced liver fibrosis  CCl4 

is injected intraperitoneally 2–3 times per week for 4–6 weeks at a dosage range 

of 300–1000 μl/kg (Constandinou et al., 2005).  

There is a lot of controversy around the oral injection of CCl4, as some 

researchers assert it has shown the highest repetition of liver fibrosis with a 

tolerable animal survival rate (Jang et al., 2008), Others, on the other hand, do 

not suggest oral delivery unless necessary due to high risks of early fatality 

(Scholten et al., 2015). Subcutaneous injection reduces the death of mice. 

However,  animals develop granulomas at the injection site (Domenicali et al., 

2009). Although inhalation administration has several drawbacks, such as the 

need for specialized equipment and operator training, it has been characterized 

as the ideal model for studying cirrhosis consequences such as portal 

hypertension and ascites development (Liedtke et al., 2013).  
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3.1.3. Thioacetamide-induced liver fibrosis  

Thioacetamide must go through metabolic activation to be toxic. This 

bioactivation process driven by CYP450 isoenzymes, results in the synthesis of 

thioacetamide sulfur dioxide, which is responsible for the overall toxicity. 

Although the mechanisms by which thioacetamide sulfur dioxide induces liver 

fibrosis are unknown, they may be explained by several processes, including the 

breakdown of methionine by reducing enzymes, an increase in lipid 

peroxidation, and an increase in oxidative stress by activating relevant proteins 

(El-Gendy et al., 2021). Regardless, the outcome is severe oxidative damage 

associated with HSC activation. Mice are also frequently employed, even though 

rats are the ideal species for creating thioacetamide-mediated liver fibrosis 

models. Thioacetamide is often administered intraperitoneally, three times per 

week for 6-8 weeks, at doses of 100 to 200 mg/kg body weight. The livers of 

these animals become enlarged, with centrilobular necrosis and moderate 

inflammatory cell infiltration, as well as upregulation of serum levels of alanine 

(ALT) and aspartate aminotransferase(AST) (Crespo Yanguas et al., 2016). The 

dosage in this model has recently been established at 150 mg/kg three times per 

week for a period of 8 to 12 weeks. Higher dosages of 200–300 mg/kg body 

weight are utilized for 16 weeks when given orally. Furthermore, when given 

300 mg/l in drinking water, C57BL/6 mice take 2–4 months to develop 

substantial fibrosis (Wallace et al., 2015).  

3.1.4. Dimethyl nitrosamine (DMN) and diethyl nitrosamine (DEN) -

induced liver fibrosis  

Dimethyl nitrosamine (DMN) and diethyl nitrosamine (DEN) are carcinogenic 

chemicals commonly employed in animal studies to induce liver fibrosis. ROS 

resulting from their biotransformation react with nucleic acids, proteins, and 

lipids in a variety of ways producing cell dysfunction and the onset of 

centrilobular necrosis (Aparicio-Bautista et al., 2013; Aydın & Akçalı, 2018; Oh 

et al., 2009; Sánchez-Pérez et al., 2005). The R16 strain of rats is the most 

vulnerable to carcinogenic substances (Melhem et al., 1989). DEN dosage orally 

is once a week for 3–11 weeks or intraperitoneally once a week for 2 weeks at 

dosages ranging from 40 to 100 mg/kg (Delire et al., 2015; Jin et al., 2010).  
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3.2. Diet‑based models 

Several diet-based models have been established for inducing liver fibrosis. 

However, results from these diet-based models cannot be extrapolated across 

species since they do not accurately reflect the typical features of human illness 

(Anstee & Goldin, 2006). 

3.2.1. High‑fat diet HF)-induced liver fibrosis  

The mice in this paradigm put on weight and become insulin-resistant in their 

peripheral tissues. it takes 50 weeks to develop steatohepatitis with only minimal 

fibrosis(Ito et al., 2007). The most ideal rodents to develop steatohepatitis on an 

HF diet are male inbred C57BL/6 mice(Ganz et al., 2014). On the other hand, 

rats are not responsive to HF diets. This high-cholesterol diet induces fibrotic 

steatohepatitis in 9 weeks (Ichimura et al., 2015). 

3.2.2. Methionine and choline‑deficient diet (MCD)-induced liver 

fibrosis  

The most used model to research nonalcoholic steatohepatitis (NASH) is the 

MCD diet (Rinella & Green, 2004). MCD diets imitate the hepatic stress brought 

on by the transfer of fatty acids from adipose tissue to the liver and the rise in 

triglyceride synthesis, which leads to liver steatosis and lipotoxicity (Betoule et 

al., 2014). Kupffer cells are the first to respond to hepatocyte injury, hence they 

may be involved in the beginning and development of MCD diet-induced liver 

steatosis (Tosello-Trampont et al., 2012). Activated Kupffer cells produce more 

TNF, attract more monocytes, and may inhibit the deposition of collagen by 

secreting a lot of MMP-13 (Sun et al., 2013). These macrophages can also 

upregulate pro-inflammatory pathways and mediators, such as nuclear factor 

kappa-light-chain-enhancer of activated B cells, intracellular adhesion molecule 

1, cyclooxygenase 2, monocyte chemoattractant protein-1, and IL6 (Orozco-

Solis et al., 2015). As a result, the pathology progresses into a more fibrotic stage 

as a result of activated HSCs. Steatohepatitis manifests in mice fed an MCD diet 

after 8 weeks, although the more fibrotic stage, specifically affecting the portal 

and bridging sections, is not seen until 16 weeks (Itagaki et al., 2013). 

3.2.3. Choline‑deficient l‑amino acid‑defined diet 
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The choline-deficient l-amino acid-defined diet results in weight gain and 

peripheral insulin resistance in animals (De Minicis et al., 2014; Denda et al., 

2002). These models are suitable for studying the development from 

nonalcoholic fatty liver diseases (NAFLD) to nonalcoholic steatohepatitis 

(NASH) and then to hepatocellular carcinoma (HCC) since choline-deficient l-

amino acid-fed rats and C57BL/6J mice typically develop liver cancers linked to 

fibrosis (Denda et al., 2002; Nakae et al., 1992). After 22 weeks and 84 weeks, 

mice fed this diet exhibit clear-cut liver fibrosis (Denda et al., 2002). 

3.3. Surgery‑based models 

It is widely established that common bile duct ligation (BDL) can lead to 

periportal biliary fibrosis and cholestatic damage. This model was developed in 

rats first, and then it was used with mice (Miyoshi et al., 1999; Rodriguez-Garay 

et al., 1996). As a result, BDL consists of a bile duct that has been transected 

twice between ligatures The bile duct blockage causes an increase in B and T 

lymphocytes in the portal tracts, which leads to the production of ROS and liver 

damage (Georgiev et al., 2008; Rodriguez-Garay et al., 1996). BDL is 

particularly useful for investigations of liver fibrosis brought on by cholestatic 

damage over a short period (Chang et al., 2005; Iwaisako et al., 2014; Park et al., 

2014). 

3.4. Genetically- modified models 

Over the past ten years, genetically altered animals have developed into potent 

study models. They make it possible to learn more about how certain proteins 

and signaling pathways contribute to the development of liver fibrosis, which 

makes it easier to find potential novel therapeutic targets (Hayashi & Sakai, 

2011). Nevertheless, genetic models require a second trigger to cause illness 

since the genetic alteration alone seldom results in liver fibrosis This suggests 

that the environment and genetics interact to cause the illness to appear (Larter 

& Yeh, 2008). The genetically- modified models include Multidrug 

resistance‑associated protein 2‑deficient mice-induced liver fibrosis, Alms1Fat 

ausi mutant mice (Morita et al., 2013) , and Alms1Fat ausi mutant mice (Arsov 

et al., 2006). 
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3.5. Infection‑based models 

Due to the strong similarity to human infection and good repeatability, 

Schistosoma mansoni infection is easily established in mice. The C3H/HeN 

strain of mice is the most likely to acquire greater degrees of fibrosis, but other 

mouse strains can exhibit significant variability in hepatic fibrosis levels. As an 

alternative, animals can be infected by injecting 10.000 viable eggs or 35 

cercariae intravenously (Cheever et al., 1987; Cheever et al., 2002) or 

percutaneously through the tail (Chiaramonte et al., 2001). More than 100 eggs 

can be laid daily by mature cercariae, some of which can be caught in the liver. 

This is the primary reason why liver fibrosis-related granulomas develop 

(Chiaramonte et al., 2001). 

4. Pathophysiology of liver fibrosis  

4.1. Role of oxidative stress (OS) in liver fibrosis  

The condition in which the cellular pro-oxidant/antioxidant redox equilibrium 

alters in favor of the pro-oxidant state is known as oxidative stress. OS can be 

caused by an increase in reactive oxygen species (ROS) or reactive nitrogen 

species (RNS), as well as a decrease in antioxidant production (Sies & Cadenas, 

1985). ROS or RNS produced by mitochondria, endoplasmic reticulum, and 

peroxisomes damage lipids, proteins, and DNA, promotes hepatocyte necrosis 

and apoptosis, and increase the inflammatory response. They also increase 

Kupffer cell and circulating inflammatory cell production of profibrogenic 

mediators and directly activate hepatic stellate cells(Ha et al., 2010). 

To combat free radicals, cells engage with the antioxidant response element 

(ARE) and several redox-sensitive transcription factors including nuclear factor 

(NF)-ϏB in response to ROS or RNS. Nuclear factor erythroid 2-related factor 2 

(NRF2) is one of the responsible elements for controlling the expression of 

protective genes that maintain redox homeostasis within the cell (Kobayashi & 

Yamamoto, 2005). Nrf2 is found in the cytosol sequestered by Kelch-like ECH-

associated protein 1 (Keap1) under physiological conditions and is released and 

translocates into the nucleus upon exposure to ROS or electrophilic chemicals. 

Within the nucleus, Nrf2 binds to the antioxidant response element (ARE) and 

promotes the transcription of many cytodefensive and antioxidant factors, 
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including heme oxygenase 1 (HO-1), superoxide dismutase (SOD), and others 

(Luedde et al., 2011). Upregulation of Nrf2/HO-1 signaling has been associated 

with decreased collagen deposition in the liver of rat models of fibrosis and 

HCC(Khadrawy et al., 2021; Mahmoud et al., 2017). 

4.2. Role of inflammation in liver fibrosis  

The main cell types involved in the inflammatory process in liver fibrosis are 

monocytes and macrophages which are responsible for producing large amounts 

of nitric oxide (NO) and inflammatory cytokines such as tumor necrosis factor α 

(TNFα) which have a direct stimulatory effect on stellate cell collagen synthesis 

(Weiskirchen & Tacke, 2014). 

Some of the inflammatory cytokines involved in liver fibrosis are  IL-1β, TNF-

α, TGF – β, and IL- 6; IL-1β mediates up-regulation of fibrogenic tissue, TNF-α 

contributes to hepatocyte apoptosis, immune cell activation, and HSC activation, 

TGF–β1 plays a role in fibrosis, contributing to both influx and activation of 

inflammatory cells as well as activation of SC. it is produced by Kupffer cells 

and SC, it up-regulates the transcription of the collagen genes and induces the 

expression of TIMP-1, and IL- 6 which is produced by hepatic SC from normal 

or cirrhotic livers, it up-regulates the expression of TGF-β in HSC from cirrhotic 

livers(Friedman, 1997). 

5. Management of liver fibrosis  

The best way to treat the condition is usually thought to be to remove the 

underlying stimulus (Bataller & Brenner, 2001; Li & Friedman, 1999). The only 

approach that has been proven to be genuinely beneficial in the past for treating 

hepatic fibrosis and severe cirrhosis is transplantation (Iredale, 2001). However, 

transplantation puts patients at significant risk for postoperative complications 

(Pirat et al., 2004). As a result, research into alternate strategies to stop liver 

fibrosis at an earlier stage is now being conducted (Bucuvalas & Ryckman, 

2002). 
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5.1. Role of antioxidants and anti-inflammatory agents in liver fibrosis 

management  

Previous several studies have been conducted to investigate the antifibrotic 

effects of several agents such as Prednisone (Czaja & Carpenter, 2004; Mathurin 

et al., 1996),  Colchicin  (Morgan et al., 2005), ursodeoxycholic acid + 

methotrexate (Kaplan et al., 2004), Malotilate (Ryhanen et al., 1996), Octreotide 

(Fort et al., 1998) and IL-1 receptor antagonists(Mancini et al., 1994). These 

agents have been studied as anti-inflammatory agents depending on their ability 

to affect inflammatory cells that contribute to fibrosis, such as neutrophils and 

lymphocytes. In addition to antioxidant agents such as Vitamin E/C (Harrison et 

al., 2003), Silymarin (Jia et al., 2001), Dilineolylphosphatidylcholine (Cao et al., 

2002), N-acetylcysteine (Kim et al., 2001),  S-adenosyl-L-methionine (Mato et 

al., 1999)and  Polyenylphosphatidylcholine(Lieber et al., 2003). They also have 

been investigated due to their ability to decrease oxidative stress and stimulation 

of antioxidant elementary genes. 

5.2. Cytokine and signal-transduction based therapies 

Liver fibrogenesis and the development of fibrosis have been linked to several 

cytokines and cellular signaling pathways such as TGF-β receptor competitors 

(Kondou et al., 2003), Halofuginone (Van de Casteele et al., 2004),  Hepatocyte 

growth factor (Ozaki et al., 2002), Interferon-α Interferon-γ (Baroni et al., 1996),  

AT receptor inhibitors (losartan, olmesartan) (Castano et al., 2003), ACE 

inhibitors (peridinopril, captopril) (Wang et al., 2000) and TNP-470 

Carbenoxolone (Uyama et al., 2003). 

5.3. Herbal medicines 

Asian nations have traditionally employed conventional drugs such as Sho-

Saiko-to (TJ-9) (Oakley et al., 2005),   Inchin-ko-to (TJ-135) (Dekel et al., 2003), 

Glycyrrhizin (Watanabe et al., 2001) , and Han-dan-gable (Li et al., 2003). These 

drugs have been studied to treat liver fibrosis, and new research both in vivo and 

in vitro has started to unravel the underlying molecular mechanism. 

6. Low-level laser therapy  
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Low-Level Laser thereby (LLLT) is a special type of laser that affects biological 

systems through non-thermal means. This area of investigation started with the 

work of Mester et al in 1967. According to Posten et al, the properties of low-

level lasers are a) Power output of lasers being 0.001- 0.1 Watts. b) Wavelength 

in the range of 300-10,600 nm. c) Pulse rate from 0, meaning continuous to 5000 

Hertz (cycles per second). d) Intensity of 0.01-10 W/cm2 and dose of 0.01 to 100 

J/ cm2 (Posten et al., 2005).  

The wavelengths range from (600nm-1100nm) and fall inside the therapeutic 

optical window (S. Farivar et al., 2014; Huang et al., 2009). laser wavelengths 

from 600-700 nm are applied to treat superficial tissue targets. They have a lower 

penetration rate whereas deeper-seated tissues are treated with laser wavelengths 

between 780 and 950 nm because they may reach deeper layers of tissue (H. 

Chung et al., 2012). To achieve good therapeutic effects, optimal optical therapy 

procedures, comprising illumination parameters (such as wavelength, 

fluence(J/cm2), power density(mW/cm2), and pulse structure) must be chosen 

(Hashmi et al., 2010). 

6.1. Applications of low-level laser therapy  

Low-level laser therapy (LLLT), is among the novel approaches for preventing 

and treating several ailments, including muscle injury (Jówko et al., 2019), skin 

injury healing (Hartmann et al., 2021), acute lung injury (de Lima et al., 2013), 

and others. PBMT is the process by which LLLT modulates cellular function 

without causing significant tissue-level heating and has been used since the mid-

1960s for inflammatory conditions (Mester, 1966). The interaction of LLLT with 

the cells includes different biomolecules such as transcription factors. LLLT has 

been suggested to increase mitochondrial ATP production and modulate ROS 

generation and the activity of transcription factors controlling cell proliferation 

and migration, cytokines, growth factors, tissue oxygenation, and protein 

synthesis (A. C. Chen et al., 2011; Hawkins et al., 2005; Yu et al., 2003). 

Amelioration of oxidative stress and inflammation has been implicated in the 

therapeutic effects of LLLT. In murine cortical neurons challenged with 

hydrogen peroxide, rotenone, or cobalt chloride, LLLT reduced mitochondrial 

ROS generation and cell death (Huang et al., 2013). LLLT prevented oxidative 
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stress and reduced collagen deposition in rat-traumatized Achilles tendons 

(Fillipin et al., 2005). The acute inflammatory response provoked by traumatic 

muscle injury in rats has been attenuated by LLLT (Silveira et al., 2016). In a 

murine model of CCl4-induced liver cirrhosis, LLLT ameliorated liver function 

and reduced the number of cirrhotic areas and inflammatory infiltrations 

(Oliveira-Junior et al., 2013). 

6.2. Mechanism of cellular response to low-level laser therapy 

6.2.1. Mitochondrial Respiration and ATP 

The electron transport chain's complex IV contains mitochondrial cytochrome c 

oxidase (CCO), which exists in two states: oxidized and reduced, with absorption 

spectra in the red and near-infrared. It is a complex enzyme, consisting of many 

polypeptide subunits (I, II, and III). Two heme groups (a and a3) and a redox-

active copper site, CuB, are found in subunit I, whereas the cytochrome c binding 

site and another redox-active copper site, CuA, are found in subunit II  (Cooper 

et al., 1991). CCO reduces molecular oxygen to water by utilizing electrons 

provided by Cytochrome c. In reality, Karu had earlier postulated that the photon 

recipient was a constituent of the mitochondrial respiratory chain (Karu, 1989). 

Utilizing a comparison of the generalized spectra and spectroscopic data for 

CCO, Karu, and Afanas'eva suggested that the 820nm and 620nm bands were 

associated with the oxidized CUA, the 760 bands, and 680nm with the reduced 

CuB. The electron transport processes in mitochondria are accelerated by CCO 

stimulation, which eventually affects molecular and cellular alterations. The 

common chemicals impacted by CCO excitation are reactive oxygen species 

(ROS), adenosine triphosphate (ATP), and nitric oxide (NO) (Karu, 2010). 

The nucleotide adenosine triphosphate (ATP) plays a variety of vital functions 

in the cell, including powering most of its energy-intensive processes and 

controlling several metabolic pathways. ATP activates intracellular pathways 

including MAPKs (mitogen-activated protein kinases) and FGF2 (growth factors 

like fibroblastic growth factor 2), EGF (epidermal growth factor), and NGF 

(nerve growth factor). It also regulates the concentration of ATP-driven carriers 

for ions such as Na+/K+ ATPase and calcium ion pumps as well as cyclic 

adenosine monophosphate (cAMP) (Karu, 2010). In a different investigation, 
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they established that 810nm-wavelength light boosted neurite outgrowth, and 

they showed that this stimulation was brought on by more ATP serving as a 

signaling molecule through P2Y receptors. These results imply that the response 

of cells to light may be significantly influenced by G protein–coupled membrane 

receptors (Anders et al., 2008).  

6.2.2. Cellular Signaling Response to Low-level Laser Therapy.  

Cells react to elevated ROS concentrations by producing scavenging 

antioxidants, modifying proteins, and expressing genes through a variety of 

molecules with ROS-detecting systems that can start signal transduction 

pathways through transcription factors (Aaron CH Chen et al., 2011). Some of 

the transcription factors that are regulated by these changes in mitochondrial 

respiration are (Ref1), (AP1), a heterodimer of c-Fos and c-Jun, (NF KB), p53, 

(ATF/CREB), (HIF1), and HIF-like factor (Hoon Chung et al., 2012; Shirin 

Farivar et al., 2014). When these factors are activated, proteins that have roles in 

cell proliferation, tissue oxygenation, and cytokine regulation, as well as growth 

factors and other inflammatory mediators, are synthesized (Hoon Chung et al., 

2012). Previous research suggested that laser therapy decreased one of the 

isoforms of NOS and decreased levels of NO in the local tissues (Moriyama et 

al., 2005). 

6.2.3. Molecular Signaling Response to Low-level Laser Therapy 

A lot of studies have been published on the impact of laser treatment on gene 

expression. laser influenced 111 genes. This category comprised an increase in 

the expression of genes involved in energy metabolism, the respiratory chain, 

and cell proliferation (Masha et al., 2013). Previous research has shown that laser 

thereby promotes axonal regeneration after damage while decreasing 

inflammatory cell invasion/activation. they also discovered that the RNA 

expression of proinflammatory cytokine genes (TNF, IL1, and IL6) was 

suppressed while the RNA expression of the anti-inflammatory gene TGF 

increased (Byrnes et al., 2005).  

Nuclear factor erythroid-2 related factor 2 (Nrf2) is a critical component in 

controlling the oxidative stress response. Nrf2 interacts with the cytoplasmic 
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protein Kelch-like ECH-associated protein-1 (Keap1) in the absence of stress 

(McMahon et al., 2003). then Keap1's conformation is altered as a result of 

exposure to too many free radicals, and Nrf2 is released. The free Nrf2 in the 

cytoplasm can then be translocated to the nucleus, where it binds to ARE 

(antioxidant response element)-mediated gene transcription, encoding 

detoxification antioxidant enzymes such as heme oxygenase (HO-1), NAD(P)H: 

quinine oxidoreductase 1 (NQO1), and glutamate-cysteine ligase catalytic 

subunit (GCLC), and thus perform cytoprotective (Itoh et al., 2004). After 

exposure to radiation at 635 nm, Sohn et al. observed that Nrf2 gene expression 

had increased [186]. Similar results were obtained by Trotter et al. (Sohn et al., 

2015). who discovered that the application of blue light increased Nrf2 

expression in vitro by a significant amount. Since this acts as a feedback 

mechanism after NF-kB activation, the interaction of these two pathways may 

be crucial in the PBM modulation of chronic inflammatory diseases. However 

further research will be needed to properly understand how blue and green light 

affect the Nrf2 signal (Trotter et al., 2017).   

Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) In its 

inactive state IκB is bound to NF-κB in the cytoplasm, however, once 

phosphorylated, IκB dissociates from NF-κB and is targeted to the proteasome 

for degradation. This permits free NF-κB to translocate to the nucleus and bind 

to DNA, triggering a cascade of gene transcription modifications, mRNA 

creation, and possible downstream expression of important cytokines, 

chemokines, and growth factors such as interleukin-8 (IL-8), IL-6, and vascular 

endothelial growth factor (VEGF102–105) (Curra et al., 2015). Light regulation 

of NF-κB has been reported by a variety of studies. For example, Chen et al. 

reported that 810 nm irradiation and radiant exposure of 0.003 J cm2 stimulated 

NFκB activation. Curra et al. investigated the effects of a 660 nm diode laser on 

NFκB protein levels in an in vivo hamster model of oral mucositis(Hamblin, 

2017). 

peroxisome proliferator-activated receptor gamma (PPAR-γ) plays an important 

function in decreasing inflammation by producing the anti-inflammatory heat 

shock protein 70 (HSP-70) (Croasdell et al., 2015). Lima and colleagues 

published research in which rats were exposed to 660 nm light (5.4 J) on the skin 
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above the bronchus (chest). They discovered a significant increase in PPAR 

mRNA expression following LLLT treatment, as well as enhanced PPAR-γ 

activity in bronchoalveolar lavage (BALF) cells from laser-treated mice. Lima 

concluded that LLLT can operate as a homeostatic facilitator by raising the 

expression of a transcription factor that signals the manufacture of HSP70 and 

other anti-inflammatory proteins (de Lima et al., 2013). 

 

7. Conclusion 

In summary, laser-tissue interaction involves reflection, refraction, scattering, 

and absorption, which are influenced by the presence of chromophores in tissues. 

Low-level laser therapy (LLLT) has emerged as a promising approach for 

various conditions due to its ability to modulate cellular functions without 

significant tissue heating. LLLT affects cellular responses through mechanisms 

such as mitochondrial respiration and ATP production, cellular signaling 

pathways, and molecular signaling responses. 

At the mitochondrial level, LLLT stimulates cytochrome c oxidase (CCO), 

leading to increased ATP production and modulation of reactive oxygen species 

(ROS) generation. This ATP serves as a signaling molecule, influencing various 

intracellular pathways and cellular functions. LLLT also affects cellular 

signaling responses by regulating transcription factors involved in cell 

proliferation, tissue oxygenation, cytokine regulation, and inflammatory 

mediators. 

Moreover, LLLT has been shown to influence gene expression, promoting 

energy metabolism, respiratory chain function, and cell proliferation while 

suppressing pro-inflammatory cytokines. Additionally, LLLT activates nuclear 

factor erythroid-2 related factor 2 (Nrf2), which plays a crucial role in the 

oxidative stress response and cytoprotection. Furthermore, LLLT modulates 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), 

peroxisome proliferator-activated receptor gamma (PPAR-γ), and other 

transcription factors, contributing to its anti-inflammatory effects and potential 

therapeutic benefits. 
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Overall, the diverse mechanisms of action of LLLT highlight its potential for 

treating various ailments by influencing cellular functions, signaling pathways, 

and gene expression patterns. Further research is needed to fully understand the 

specific effects and optimize the therapeutic applications of LLLT. 
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